Newbie question: have (looks like) valid rrd data, can't get the graph to appear in the status page

John Burk john.d.burk at gmail.com
Tue Apr 29 23:04:16 CEST 2008


Can someone see what I'm missing?  I get a 'hobbit graph ncv:mysl'
link in the mysql status and trends pages, but no graph.

here's the data as it appears in the status page:
(ignore the low values for ThreadsCreated and OpenedTables, these
are values over the last sample interval - could probably have done this with
a DERIVE rrd dataType - I do the calcs in my collection script)
=====================================
QueriesPerSecAvg:5177
QueriesPerSec:1851
ThreadsConnected:396
ThreadsCreated:0
OpenFiles:19751
OpenTables:12500
OpenedTables:0
=====================================

here's my block from hobbitgraph.cfg:
=====================================
[mysql]
    TITLE MySQL Queries Per Second
    YAXIS #
    DEF:qpsavg=mysql.rrd:QueriesPerSecAvg:GAUGE
    DEF:qps=mysql.rrd:QueriesPerSec:GAUGE
    LINE2:qpsavg#0C0C0C:QpsAvg
    LINE2:qps#C0C0C0:Qps
    GPRINT:qpsavg:LAST: \: %5.1lf (cur)
    GPRINT:qpsavg:MAX: \: %5.1lf (max)
    GPRINT:qpsavg:MIN: \: %5.1lf (min)
    GPRINT:qpsavg:AVERAGE: \: %5.1lf (avg)\n
    GPRINT:qps:LAST: \: %5.1lf (cur)
    GPRINT:qps:MAX: \: %5.1lf (max)
    GPRINT:qps:MIN: \: %5.1lf (min)
    GPRINT:qps:AVERAGE: \: %5.1lf (avg)\n
=====================================

hobbitserver.cfg:
=====================================
TEST2RRD="cpu=la,disk,inode,qtree,memory,$PINGCOLUMN=tcp,http=tcp,dns=tcp,dig=tcp,time=ntpstat,vmstat,iostat,netstat,temperature,apache,bind,sendmail,mailq,nmailq=mailq,socks,bea,iishealth,citrix,bbgen,bbtest,bbproxy,hobbitd,files,procs=processes,ports,clock,lines,mysql=ncv"
NCV_mysql="*:GAUGE"

GRAPHS="la,vmstat,memory,processes,inode,qtree,files,users,disk,iostat,tcp.http,tcp,ncv,netstat,ifstat,mrtg::1,ports,temperature,ntpstat,apache,bind,sendmail,mailq,socks,bea,iishealth,citrix,bbgen,bbtest,bbproxy,hobbitd,clock,lines,mysql"
=====================================

bb-hosts.cfg
=====================================
xx.xx.xx.xx   greenjeans      # conn mysql TRENDS:*,!tcp,!netstat2
=====================================


here's the output of "rrdtool info ../../data/rrd/greenjeans/mysql.rrd"
=====================================
filename = "../../data/rrd/greenjeans/mysql.rrd"
rrd_version = "0003"
step = 300
last_update = 1209502058
ds[QueriesPerSecAvg].type = "GAUGE"
ds[QueriesPerSecAvg].minimal_heartbeat = 600
ds[QueriesPerSecAvg].min = 0.0000000000e+00
ds[QueriesPerSecAvg].max = NaN
ds[QueriesPerSecAvg].last_ds = "5186"
ds[QueriesPerSecAvg].value = 8.1958000000e+05
ds[QueriesPerSecAvg].unknown_sec = 0
ds[QueriesPerSec].type = "GAUGE"
ds[QueriesPerSec].minimal_heartbeat = 600
ds[QueriesPerSec].min = 0.0000000000e+00
ds[QueriesPerSec].max = NaN
ds[QueriesPerSec].last_ds = "1386"
ds[QueriesPerSec].value = 2.5088800000e+05
ds[QueriesPerSec].unknown_sec = 0
ds[ThreadsConnected].type = "GAUGE"
ds[ThreadsConnected].minimal_heartbeat = 600
ds[ThreadsConnected].min = 0.0000000000e+00
ds[ThreadsConnected].max = NaN
ds[ThreadsConnected].last_ds = "374"
ds[ThreadsConnected].value = 6.0887000000e+04
ds[ThreadsConnected].unknown_sec = 0
ds[ThreadsCreated].type = "GAUGE"
ds[ThreadsCreated].minimal_heartbeat = 600
ds[ThreadsCreated].min = 0.0000000000e+00
ds[ThreadsCreated].max = NaN
ds[ThreadsCreated].last_ds = "0"
ds[ThreadsCreated].value = 0.0000000000e+00
ds[ThreadsCreated].unknown_sec = 0
ds[OpenFiles].type = "GAUGE"
ds[OpenFiles].minimal_heartbeat = 600
ds[OpenFiles].min = 0.0000000000e+00
ds[OpenFiles].max = NaN
ds[OpenFiles].last_ds = "19685"
ds[OpenFiles].value = 3.1083160000e+06
ds[OpenFiles].unknown_sec = 0
ds[OpenTables].type = "GAUGE"
ds[OpenTables].minimal_heartbeat = 600
ds[OpenTables].min = 0.0000000000e+00
ds[OpenTables].max = NaN
ds[OpenTables].last_ds = "12500"
ds[OpenTables].value = 1.9750000000e+06
ds[OpenTables].unknown_sec = 0
ds[OpenedTables].type = "GAUGE"
ds[OpenedTables].minimal_heartbeat = 600
ds[OpenedTables].min = 0.0000000000e+00
ds[OpenedTables].max = NaN
ds[OpenedTables].last_ds = "0"
ds[OpenedTables].value = 7.8000000000e+01
ds[OpenedTables].unknown_sec = 0
rra[0].cf = "AVERAGE"
rra[0].rows = 576
rra[0].pdp_per_row = 1
rra[0].xff = 5.0000000000e-01
rra[0].cdp_prep[0].value = NaN
rra[0].cdp_prep[0].unknown_datapoints = 0
rra[0].cdp_prep[1].value = NaN
rra[0].cdp_prep[1].unknown_datapoints = 0
rra[0].cdp_prep[2].value = NaN
rra[0].cdp_prep[2].unknown_datapoints = 0
rra[0].cdp_prep[3].value = NaN
rra[0].cdp_prep[3].unknown_datapoints = 0
rra[0].cdp_prep[4].value = NaN
rra[0].cdp_prep[4].unknown_datapoints = 0
rra[0].cdp_prep[5].value = NaN
rra[0].cdp_prep[5].unknown_datapoints = 0
rra[0].cdp_prep[6].value = NaN
rra[0].cdp_prep[6].unknown_datapoints = 0
rra[1].cf = "AVERAGE"
rra[1].rows = 576
rra[1].pdp_per_row = 6
rra[1].xff = 5.0000000000e-01
rra[1].cdp_prep[0].value = 1.5580810000e+04
rra[1].cdp_prep[0].unknown_datapoints = 0
rra[1].cdp_prep[1].value = 4.7480566667e+03
rra[1].cdp_prep[1].unknown_datapoints = 0
rra[1].cdp_prep[2].value = 4.0307553957e+02
rra[1].cdp_prep[2].unknown_datapoints = 2
rra[1].cdp_prep[3].value = 0.0000000000e+00
rra[1].cdp_prep[3].unknown_datapoints = 2
rra[1].cdp_prep[4].value = 1.9674374101e+04
rra[1].cdp_prep[4].unknown_datapoints = 2
rra[1].cdp_prep[5].value = 1.2499100719e+04
rra[1].cdp_prep[5].unknown_datapoints = 2
rra[1].cdp_prep[6].value = 1.0107913669e+00
rra[1].cdp_prep[6].unknown_datapoints = 2
rra[2].cf = "AVERAGE"
rra[2].rows = 576
rra[2].pdp_per_row = 24
rra[2].xff = 5.0000000000e-01
rra[2].cdp_prep[0].value = 4.6847800000e+04
rra[2].cdp_prep[0].unknown_datapoints = 0
rra[2].cdp_prep[1].value = 1.3392856667e+04
rra[2].cdp_prep[1].unknown_datapoints = 0
rra[2].cdp_prep[2].value = 1.6543988729e+03
rra[2].cdp_prep[2].unknown_datapoints = 5
rra[2].cdp_prep[3].value = 5.0000000000e-02
rra[2].cdp_prep[3].unknown_datapoints = 5
rra[2].cdp_prep[4].value = 7.8531830767e+04
rra[2].cdp_prep[4].unknown_datapoints = 5
rra[2].cdp_prep[5].value = 4.9999100719e+04
rra[2].cdp_prep[5].unknown_datapoints = 5
rra[2].cdp_prep[6].value = 1.4874580336e+00
rra[2].cdp_prep[6].unknown_datapoints = 5
rra[3].cf = "AVERAGE"
rra[3].rows = 576
rra[3].pdp_per_row = 288
rra[3].xff = 5.0000000000e-01
rra[3].cdp_prep[0].value = 1.7319647667e+05
rra[3].cdp_prep[0].unknown_datapoints = 216
rra[3].cdp_prep[1].value = 5.8770938095e+04
rra[3].cdp_prep[1].unknown_datapoints = 216
rra[3].cdp_prep[2].value = 1.0685098873e+04
rra[3].cdp_prep[2].unknown_datapoints = 221
rra[3].cdp_prep[3].value = 7.9333333333e-01
rra[3].cdp_prep[3].unknown_datapoints = 221
rra[3].cdp_prep[4].value = 5.4433304886e+05
rra[3].cdp_prep[4].unknown_datapoints = 221
rra[3].cdp_prep[5].value = 3.4992956739e+05
rra[3].cdp_prep[5].unknown_datapoints = 221
rra[3].cdp_prep[6].value = 1.1470791367e+01
rra[3].cdp_prep[6].unknown_datapoints = 221
=====================================


john burk



More information about the Xymon mailing list